

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS (US)

Paper 4 (Extended)

May/June 2017

MARK SCHEME

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

Abbreviations

correct answer only cao

dependent dep

follow through after error FT ignore subsequent working or equivalent isw

oe SC

Special Case not from wrong working nfww

soi seen or implied

Question	Answer	Marks	Part marks
1(a)(i)	Image at (1, 4), (3, 7), (1, 7)	2	B1 reflection in $x = 4$ or $y = k$
1(a)(ii)	Image at (-1, 1), (-4, 1), (-1, 3)	2	B1 correct size and correct orientation wrong position or for rotation 90° clockwise around (0, 0)
1(a)(iii)	Image at $(2, -4)$, $(4, -4)$, $(2, -1)$	2	B1 for translation by $\begin{pmatrix} 1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -5 \end{pmatrix}$
1(b)(i)	Enlargement or dilation	1	
	[sf] – 0.5 oe	1	
	(5, 5)	1	
1(b)(ii)	Stretch	1	
	[factor] 3	1	
	y-axis invariant oe	1	
2(a)(i)	275.31	2	M1 for $90 \times 23.15 + 1885 \times 13.5$ oe
2(a)(ii)	3202	3	M2 for $\frac{198.16 - 90 \times 0.245}{0.055}$ oe
			M1 for 90×0.245 or 90×24.5 oe
2(b)	17.[0] or 17.00 to 17.01	2	M1 for $13.5 \times \left(1 + \frac{8}{100}\right)^3$
2(c)(i)	40	3	M2 for $\frac{7.7 - 5.5}{5.5}$ [×100] oe or $\frac{7.7}{5.5}$ ×100 or M1 for $\frac{7.7}{5.5}$ oe
2(c)(ii)	11.9 or 11.86 to 11.87	3	M2 for $\sqrt[3]{\frac{7.7}{5.5}}$ oe or M1 for $5.5 \times x^3 = 7.7$ oe
2(d)	150 [million] oe	2	M1 for 390 [million] ÷ (5 + 2 + 6)

© UCLES 2017 Page 2 of 7

250 nfww		
	3	M2 for 258.25 ÷ ((100 + 3.3) ÷ 100) or M1 for 258.25 associated with 103.3[%]
71 < <i>t</i> ≤ 72	1	
72.3 or 72.27 to 72.28 nfww	4	M1 for midpoints soi (condone 1 error or omission)
		M1 for use of $\sum fx$ with x in correct interval including both boundaries
		M1 (dep on 2nd M1) for $\sum fx \div 90$
41, 62, 80, 90	2	B1 for 2 correct values
Correct curve	3	B1FT their (c)(i) for 5 correct heights B1 for 5 points plotted at upper ends of intervals B1FT (dep on at least B1) for increasing curve or increasing polygon through 5 points
		If zero scored, SC1FT for 4 correct points plotted
72.1 to 72.4	1	
1.9 to 2.2	2	M1 for UQ = 73.2 to 73.4 or LQ = 71.2 to 71.3
184 or 184.4 to 184.5	4	M3 for $3.72 \div \left(\frac{40}{60 \times 60} + \frac{1.72}{190}\right)$ oe
		or M2 for $\left(\frac{40}{60 \times 60} + \frac{1.72}{190}\right)$ or
		$40 + \frac{1.72}{190} \times 60 \times 60$
		or M1 for $\left(\frac{40}{60 \times 60}\right)$ or $\left(\frac{1.72}{190}\right)$
		or $\frac{1.72}{190} \times 60 \times 60$
-1.6 to -1.4	1	
-0.5	1	
k > -4	2	B1 for identifying the -4 or for horizontal line drawn $y = -4$
y = x - 5 ruled and -2.3 to $-2.1-1.2$ to -1.1	3	B2 for correct line and 2 correct values or no line and 3 correct values or B1 for no line and 2 correct values or B1 for correct line
	72.3 or 72.27 to 72.28 nfww 41, 62, 80, 90 Correct curve 72.1 to 72.4 1.9 to 2.2 184 or 184.4 to 184.5 $-1.6 \text{ to } -1.4$ -0.5 $k > -4$ $y = x - 5 \text{ ruled}$ and	72.3 or 72.27 to 72.28 nfww 41, 62, 80, 90 2 Correct curve 3 72.1 to 72.4 1.9 to 2.2 184 or 184.4 to 184.5 4 -1.6 to -1.4 -0.5 $k > -4$ 2 $y = x - 5$ ruled and -2.3 to -2.1 -1.2 to -1.1

© UCLES 2017 Page 3 of 7

Question	Answer	Marks	Part marks
4(e)	Tangent ruled at $x = 1$	B1	No daylight at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 0.8$ and 1.2
	-6 to -4	2	Dep on B1 or close attempt at tangent at $x = 1$ M1 for rise/run for <i>their</i> tangent at $x = 1$
5(a)	9	1	
5(b)	[a =] 4 [b =] - 4 [c =] 2	3	M1 for $(2x-1)^2 + 1$ B1 for $[(2x-1)^2 =]4x^2 - 4x + 1$
5(c)	$\frac{x+1}{2}$ oe final answer	2	M1 for $y+1=2x$ or for $\frac{y}{2} = x - \frac{1}{2}$ or for $x = 2y - 1$
5(d)	$\sqrt{3}$ or 1.73 or 1.732	1	
6(a)(i)	50890 or 50893 to 50900.4	2	M1 for $\pi \times 18^2 \times 50$
6(a)(ii)	20.5 or 20.52 to 20.534	3	B2 for answer 29.5 or 29.46 to 29.48 OR M2 for $(50900 - 30000) \div (\pi \times 18^2)$ oe or M1 for $(\text{figs } 50.9 - \text{figs } 30) \div (\pi \times \text{ figs } 18^2)$ or M1 for $(50900 - 30000) = (\pi \times 18^2)h$ oe OR alternative method M2 for $50 - \frac{30000}{\pi \times 18^2}$ oe M1 for figs $30 = \pi \times \text{figs } 18^2 \times (50 - h)$ oe or for $\frac{\text{figs } 30}{\pi \times \text{figs } 18^2}$ oe OR alternative method M2 for $\frac{(50.9 - 30)}{50.9} \times 50$ oe or M1 for $\frac{(50.9 - 30)}{50.9} \times 50$ oe or M1 for $\frac{(\text{figs } 50.9 - \text{figs } 30)}{50.9} \times 50$ oe figs $50.9 - \text{figs } 30$ figs 50.9

Question	Answer	Marks	Part marks
6(a)(iii)	334 nfww	4	M2 for figs $30 \div \frac{2}{3}\pi \times 3.5^3$ oe or M1 for $\frac{1}{2} \times \frac{4}{3}\pi \times 3.5^3$ oe and B1 for 30 000
6(b)(i)	3.28[6] or 3.29	3	M2 for $[r^2 =] \frac{95 \times 3}{8.4\pi}$ oe or M1 for $\frac{1}{3}\pi \times r^2 \times 8.4 [= 95]$
6(b)(ii)	93.1 to 93.6	4	M3 for $\pi \times 3.3 \times \sqrt{3.3^2 + 8.4^2}$ or M2 for $\sqrt{3.3^2 + 8.4^2}$ or M1 for $3.3^2 + 8.4^2$
7(a)(i)	-7x + 55 final answer	2	M1 for $8x + 20$ or $-15x + 35$ or answer $-7x + k$ or $kx + 55$
7(a)(ii)	$x^2 - 14x + 49$ final answer	2	M1 for 3 of $x^2 - 7x - 7x + 49$
7(b)(i)	-18	3	 M1 for a correct first step ie correctly multiplying by 3 or correctly dividing by 2 or for correctly subtracting 5 M1 for correctly reaching ax = b from their first step
7(b)(ii)	15	3	M2 for $6x - 4x = 21 + 9$ oe or M1 for $6x - 21$ or correct division by 3 or for correctly reaching $ax = b$ from <i>their</i> first step
7(b)(iii)	5 and -5	3	B2 for 5 or -5 or M1 for $[x^2 =] (74 + 1) \div 3$ or better
8(a)	(-0.5, 3)	2	B1 for one correct value
8(b)	[y =] -2x + 2 final answer	3	M1 for $\frac{-2-8}{2-3}$ or better M1 for substitution of (-3, 8) or (2, -2) or their midpoint into $y = mx + c$ with their m
8(c)	y = -2x + 7 oe	2FT	FT their (b) M1 for $y = (their -2)x + k$ ($k \ne 2$) or $y = kx + 7$ ($k \ne 0$) If zero scored, SC1 for $(their -2)x + 7$

© UCLES 2017 Page 5 of 7

Question	Answer	Marks	Part marks
8(d)	x - 2y = -9 or $-x + 2y = 9$ oe	4	B3 for any correct equivalent in wrong form Or M2 for $y = \frac{1}{2}x + k$ oe (FT negative reciprocal of <i>their</i> gradient in (b)) or M1 for grad = $\frac{1}{2}$ (FT negative reciprocal of <i>their</i> gradient in (b)) M1 for substitution of $(1, 5)$ into $y = mx + c$ oe with <i>their</i> m
9(a)(i)	290	2	M1 for 180 + 110 oe
9(a)(ii)	156.8 or 156.7[9]	5	B1FT for $CBA = 10^{\circ}$ (their (a) – 280) and B3 for [angle $ACB =]13.2^{\circ}$ or M2 for [sin C] = $\frac{50 \sin(their10)}{38}$ or M1 for $\frac{50}{\sin C} = \frac{38}{\sin(their10)}$ oe
9(a)(iii)	8.68 or 8.677 to 8.684	3	M2 for $[x=]50\sin(their10)$ oe or M1 for $\sin(their10) = \frac{x}{50}$ oe or M1 for a correct right-angled triangle drawn with 50 as hypotenuse
9(b)(i)	x(x-25) = 2200	1	and no errors seen
9(b)(ii)	$\frac{-(-25) \pm \sqrt{(-25)^2 - 4(1)(-2200)}}{2(1)}$ or better	B2	B1 for $\sqrt{(-25)^2 - 4(1)(-2200)}$ or better or for $\left(x - \frac{25}{2}\right)^2$ oe or B1 for $\frac{-(-25) + \sqrt{q}}{2(1)}$ or $\frac{-(-25) - \sqrt{q}}{2(1)}$ or both or for $\frac{25}{2} + \text{or} - \sqrt{\left(\frac{25}{2}\right)^2 + 2200}$
	-36.04 and 61.04 final answer	B1,B1	If B0B0 , SC1 for values in ranges –36.042 to –36.041 and 61.041 to 61.042 seen or for answers –36[.0] or –36.042 to –36.041 and 61[.0] or 61.041 to 61.042 or –36.04 and 61.04 seen in working or for –61.04 and 36.04 as final ans

© UCLES 2017 Page 6 of 7

Question	Answer	Marks	Part marks
10(a)(i)	5 and 13	1	
10(a)(ii)	8n - 3 = 203	M1	Evaluation of 25th or 26th term with supporting evidence or explanation
	25.75 or $25\frac{3}{4}$	A1	Second evaluation of 25th or 26th terms with supporting evidence or explanation
			If zero scored, SC1 for 25.75 or 197 and 205 with partial evidence or explanation
10(b)(i)	6n + 7 oe final answer	2	B1 for $6n + c$ or $kn + 7$ $k \neq 0$
10(b)(ii)	$n^2 + n + 2$ oe final answer	2	B1 for a quadratic expression or second difference = 2
10(c)	[y =] 10	2	M1 for $5(20 - y) = 50$
	[First term =] 14	2	M1 for $5(x - their y) = 20$ or for $20 \div 5 + their y$

© UCLES 2017 Page 7 of 7